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Motivation

Healthcare is a limited resource environment where scarce capacity is
often reserved for the most severe patients

With the advancement of data availability and analytical methods, we
can develop more accurate predictive models

=⇒ Proactive Care / Preventative Care



Motivation

Early Warning Systems in hospital:

Prognostic systems that monitor hospitalized patients and prompt alarms
for intensive care unit admissions

Early warning systems for cardiovascular risk

Predictive models for hospital-acquired infection

Readmission risk at discharge

“Recent systematic reviews have demonstrated that Early Warning System
based alarms only marginally improve outcomes while substantially
increasing physician and nursing workloads”



Key Consideration

When proactive care is an option, we face the tension!

Providing care for patients when they are less critical could mean that
fewer resources are necessary to return them to a healthy and stable state

With limited resources, providing proactive care may delay treatment for
the more critical patients

Some of the less critical patients may become stable without ever
needing critical care

Goal: Develop a better understanding of these tradeoffs and derive an optimal
scheduling policy for proactive care



The Model

A stochastic queueing network where two queues are served by s servers
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Research Questions

When the system is in the “normal” state of operation, what is the
optimal scheduling rule?

=⇒ Long-run average performance / equilibrium performance

When random shocks (disease outbreak or mass casualty events) bring
the system far from its normal state of operation, what is the optimal
scheduling policy to bring the system back to normal?

=⇒ Transient performance



Challenges

Overloaded regime: the cµ/θ rule is
optimal (Atar et al. (2011))

Limiting heavy-traffic regime:
the optimal control is the solution to the
associated Hamilton-Jacobi-Bellman
equation (Harrison and Zeevi (2003))

Special Case: transient two-queue fluid
system (Larrañaga (2015))
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Roadmap

Fluid approximation

Optimal scheduling policy to minimize the long-run average holding cost

Optimal scheduling policy to minimize the transient holding cost



A Fluid Approximation to Simplify the Problem

Consider a piecewise affine dynamical system characterized by

dqu(t) = λu − µuzu(t)− θuqu(t) + γqm(t)

dqm(t) = λm − µmzm(t)− θmqm(t)− γqm(t)

where zi(t) is the amount of capacity devoted to serving Class i patients
satisfying

zi(t) ≥ 0, i = u,m, t ≥ 0

zu(t) + zm(t) ≤ s, t ≥ 0

dqi(t) ≥ 0 whenever qi(t) = 0, i = u,m, t ≥ 0

The set of admissible controls, denoted by F , are Markov, non-anticipatory
and preemptive.



Long-run Average Optimization - Definition

For any staffing level s, the long-run optimization problem is

Problem (Long-run average optimization)

min
π∈F

lim sup
T→∞

1
T

∫ T

0
(cuqu(t) + cmqm(t)) dt

In a Markovian setting, the cost rates cu and cm incorporates unit-time holding
cost, fixed abandonment cost, and fixed degradation cost.

Theorem (Optimal long-run scheduling policy)

The modified cµ/θ-rule (a simple static index policy) is optimal for the
long-run average optimization problem



Long-run Average Optimization

Let Pu and Pm denote the strict priority rule to urgent and moderate
patients

The modified cµ/θ-rule decides when to use Pu or Pm in the descending
order of the modified cµ/θ-index

The modified cµ/θ-index for urgent patients is

cuµu

θu

The modified cµ/θ-index for moderate patients is

cm

γ + θm
µm +

γ
γ+θm

cu

θu
µm



Long-run Average Optimization

We derive the optimal long-run scheduling policy by analyzing the long-run
behavior of the fluid process under the strict priority rules

Example: fluid queue length process under Pu
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(a) Case 1. µu > γ
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Globally asymptotically stable
equilibrium
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Locally asymptotically stable equi-
librium



Long-run Average Optimization

For the stochastic system, bi-stability means that the queue length process
fluctuates between the two fluid equilibria infinitely often

Example: stochastic queue length process of moderate patients under Pu
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The Modified cµ/θ-Rule

Optimal long-run scheduling policy in Case 2: µu <
γ

γ+θm
µm

In this case, it always holds that cu
θu
µu >

cm
θm+γµm +

γ
(θm+γ)

cu

θu
µm
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Transient Optimal Control - Definition

Assume s > λu/µu ++λm/µm, so that there is sufficient service capacity
to empty the system in a finite amount of time given any initial condition

Define the first system empty time τ := inf {t ≥ 0 : qu(t) + qm(t) = 0}

Problem (Transient optimal control)

min
π∈F

∫ τ

0
(cuqu(t) + cmqm(t)) dt

s.t. dqu(t) = λu − µuzu(t)− θuqu(t) + γqm(t)

dqm(t) = λm − µmzm(t)− (γ + θm)qm(t)

zu(t) + zm(t) ≤ s

zu(t), zm(t), qu(t), qm(t) ≥ 0



Transient Optimal Control

Theorem (Optimal transient scheduling policy)
For the transient optimal control problem,

the modified cµ/θ-rule is optimal when the states are far from the origin

the cµ-rule is optimal when the states are close to the origin

Furthermore, the optimal control switches priority at most once

qu

qm



Transient Optimal Control

Theorem (Optimal transient scheduling policy)
For the transient optimal control problem,

the modified cµ/θ-rule is optimal when the states are far from the origin

the cµ-rule is optimal when the states are close to the origin

Furthermore, the optimal control switches priority at most once

qu

qm

Solve the dual problem using 
Pontryagin’s Minimum Principle 

Solve the optimal control directly



Transient Optimal Control

Example: Optimal transient state trajectories
The optimal control switches from the modified cµ/θ-rule to the cµ-rule
when the state trajectory crosses the policy curve P

Pu

Pm

Number of urgent patients

N
um

be
r o

f m
od

er
at

e 
pa

tie
nt

s

(a) cµ-rule: Pm, modified cµ/θ-rule: Pu

Pm

Pu

Number of urgent patients

N
um

be
r o

f m
od

er
at

e 
pa

tie
nt

s

(b) cµ-rule: Pu, modified cµ/θ-rule: Pm



Transient Optimal Control

Sensitivity analysis: The policy curve P for switching from Pu to Pm
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Summary

We propose a two-class multi-server queueing model to study the
potential of proactive care with degrading class types

We consider a fluid approximation and characterize optimal long-run and
transient scheduling policies

When the system is in the “normal state of operation, what is the
optimal priority rule?
Ans: The modified cµ/θ-rule

When random shocks (disease outbreak or mass casualty events)
bring the system far from its normal state of operation, what is the
optimal scheduling policy to bring the system back to normal?
Ans: The modified cµ/θ-rule (far), the cµ-rule (close)
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